Telegram Group & Telegram Channel
Forwarded from Machinelearning
🌟 Distill-Any-Depth: метод оценки глубины сцены по одному изображению.

Distill-Any-Depth - метод обучения моделей монокулярной оценки глубины, который сочетает кросс-контекстную дистилляцию и мульти-учительский подход для точного определения расстояния до объектов на RGB-изображении. Он предназначен для обучения моделей (например, DPT, MiDaS или DepthAnythingv2), которые учатся на псевдо-метках, сгенерированных учительскими моделями (Genpercept, DepthAnythingv2).

Метод не просто улучшает существующие алгоритмы, но и задает новый стандарт в области определения глубины. Методика может применяться в сфере автономного транспорта и AR-решений. Она может ускорить создание точных 3D-карт для навигации и улучшить реалистичность виртуальных миров за счет детализированного анализа пространства. При этом, обучение CV-моделей с Distill-Any-Depth довольно энергоэффективно — достаточно одной NVIDIA V100.

Основа Distill-Any-Depth - кросс-контекстная дистилляция, объединяющая 2 сценария:

🟠Shared-Context Distillation — модель-учитель и модель-ученик обучаются на одинаковых фрагментах изображения.

🟠Local-Global Distillation — модель-учитель анализирует локальные фрагменты, а модель-ученик предсказывает глубину для всего изображения, отвечая за глобальную согласованность сцены.

Экспериментальная модель обучалась на 50 тыс. изображений из SA-1B с разрешением 560×560. Использовались псевдо-метки от Genpercept (диффузионная модель) и DepthAnythingv2 (DINOv2). В рамках мульти-учительского подхода на каждой итерации случайно выбирался один учитель.

На тестах DIODE и ETH3D метод сократил значение AbsRel на 9.6–20% по сравнению с базовой дистилляцией. Например, при обучении модели-ученика DPT с учителями Genpercept и DepthAnythingv2 AbsRel на ETH3D составил 0.065 против 0.096 у Genpercept.

На бенчмарках NYUv2, KITTI, ScanNet модель достигла SOTA: AbsRel 0.043 (NYUv2), 0.070 (KITTI), 0.042 (ScanNet). В сравнении с DepthAnything v2 (AbsRel: 0.045 на NYUv2) и Marigold (0.055) Distill-Any-Depth показал более высокую детализацию и точность относительной глубины.

▶️В открытом доступе 3 модели, обученные с Distill-Any-Depth:

🟢Distill-Any-Depth-Multi-Teacher-Small - 24.8М параметров

🟢Distill-Any-Depth-Multi-Teacher-Base - 95.5М параметров

🟢Distill-Any-Depth-Multi-Teacher-Large - 335.3М параметров


▶️Локальная установка и инференс в Gradio:

# Create Conda env 
conda create -n distill-any-depth -y python=3.10
conda activate distill-any-depth

# Clone Repo
git clone https://github.com/rmurai0610/MASt3R-SLAM.git --recursive
cd MASt3R-SLAM/

# Install dependencies
pip install -r requirements.txt
pip install -e .

# If use hf_hub_download, you can use the following code
checkpoint_path = hf_hub_download(repo_id=f"xingyang1/Distill-Any-Depth", filename=f"large/model.safetensors", repo_type="model")

# Launch Gradio demo
python app.py


📌Лицензирование: MIT License.


🟡Страница проекта
🟡Arxiv
🟡Набор моделей
🟡Demo
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #Depth #DIstillAnyDepth
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/machinelearning_interview/1637
Create:
Last Update:

🌟 Distill-Any-Depth: метод оценки глубины сцены по одному изображению.

Distill-Any-Depth - метод обучения моделей монокулярной оценки глубины, который сочетает кросс-контекстную дистилляцию и мульти-учительский подход для точного определения расстояния до объектов на RGB-изображении. Он предназначен для обучения моделей (например, DPT, MiDaS или DepthAnythingv2), которые учатся на псевдо-метках, сгенерированных учительскими моделями (Genpercept, DepthAnythingv2).

Метод не просто улучшает существующие алгоритмы, но и задает новый стандарт в области определения глубины. Методика может применяться в сфере автономного транспорта и AR-решений. Она может ускорить создание точных 3D-карт для навигации и улучшить реалистичность виртуальных миров за счет детализированного анализа пространства. При этом, обучение CV-моделей с Distill-Any-Depth довольно энергоэффективно — достаточно одной NVIDIA V100.

Основа Distill-Any-Depth - кросс-контекстная дистилляция, объединяющая 2 сценария:

🟠Shared-Context Distillation — модель-учитель и модель-ученик обучаются на одинаковых фрагментах изображения.

🟠Local-Global Distillation — модель-учитель анализирует локальные фрагменты, а модель-ученик предсказывает глубину для всего изображения, отвечая за глобальную согласованность сцены.

Экспериментальная модель обучалась на 50 тыс. изображений из SA-1B с разрешением 560×560. Использовались псевдо-метки от Genpercept (диффузионная модель) и DepthAnythingv2 (DINOv2). В рамках мульти-учительского подхода на каждой итерации случайно выбирался один учитель.

На тестах DIODE и ETH3D метод сократил значение AbsRel на 9.6–20% по сравнению с базовой дистилляцией. Например, при обучении модели-ученика DPT с учителями Genpercept и DepthAnythingv2 AbsRel на ETH3D составил 0.065 против 0.096 у Genpercept.

На бенчмарках NYUv2, KITTI, ScanNet модель достигла SOTA: AbsRel 0.043 (NYUv2), 0.070 (KITTI), 0.042 (ScanNet). В сравнении с DepthAnything v2 (AbsRel: 0.045 на NYUv2) и Marigold (0.055) Distill-Any-Depth показал более высокую детализацию и точность относительной глубины.

▶️В открытом доступе 3 модели, обученные с Distill-Any-Depth:

🟢Distill-Any-Depth-Multi-Teacher-Small - 24.8М параметров

🟢Distill-Any-Depth-Multi-Teacher-Base - 95.5М параметров

🟢Distill-Any-Depth-Multi-Teacher-Large - 335.3М параметров


▶️Локальная установка и инференс в Gradio:

# Create Conda env 
conda create -n distill-any-depth -y python=3.10
conda activate distill-any-depth

# Clone Repo
git clone https://github.com/rmurai0610/MASt3R-SLAM.git --recursive
cd MASt3R-SLAM/

# Install dependencies
pip install -r requirements.txt
pip install -e .

# If use hf_hub_download, you can use the following code
checkpoint_path = hf_hub_download(repo_id=f"xingyang1/Distill-Any-Depth", filename=f"large/model.safetensors", repo_type="model")

# Launch Gradio demo
python app.py


📌Лицензирование: MIT License.


🟡Страница проекта
🟡Arxiv
🟡Набор моделей
🟡Demo
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #Depth #DIstillAnyDepth

BY Machine learning Interview






Share with your friend now:
tg-me.com/machinelearning_interview/1637

View MORE
Open in Telegram


Machine learning Interview Telegram | DID YOU KNOW?

Date: |

To pay the bills, Mr. Durov is issuing investors $1 billion to $1.5 billion of company debt, with the promise of discounted equity if the company eventually goes public, the people briefed on the plans said. He has also announced plans to start selling ads in public Telegram channels as soon as later this year, as well as offering other premium services for businesses and users.

Telegram is riding high, adding tens of million of users this year. Now the bill is coming due.Telegram is one of the few significant social-media challengers to Facebook Inc., FB -1.90% on a trajectory toward one billion users active each month by the end of 2022, up from roughly 550 million today.

Machine learning Interview from ye


Telegram Machine learning Interview
FROM USA